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Abstract— The functional brain connectivity based on resting-
sate functional magnetic resonance imaging (fMRI) data has
been widely studied. However, most of the analyzes, based on
functional brain network construction, either limit themselves
to descriptors from graph-theoretical measures and subgraph
patterns, or fail to gain the whole picture of the large-scale
functional brain network. Due to the curse of the dimensional-
ity, the millions-dimension data of the correlation information
from fMRIs can not be directly processed by the current
machine learning method, even with the state-of-art deep learning
architecture. Hence, a good representation that can be both
informative and compressed is strongly desired.

In this paper, we introduce a distributional representation
that can provide information across high resolution regions to
low resolution regions in a brain. It is believed that a good
representation of functional brain connectivity can easily separate
patients with brain disorders from normal controls. In our
case, the difference between groups is visualized clearly with
the distributional representation. The visualized group difference
not only gives a visible explanation for existing techniques in
functional brain network construction, but also provides extra
clues for the informativeness of weak connections, which are
neglected in traditional analysis.

Moreover, we propose an approach with distributional repre-
sentation mappings to validate the effectiveness of the features
visualized in the distributional representation. We find that the
mapped distributional representation improves the performance
dramatically in distinguishing subjects with a given mental
disorder from the control ones. The results suggests that the
distributional representation is promising for further design
of algorithms, such as clustering and classification, for brain
disorders.

I. INTRODUCTION

The connectivity information from resting state functional
magnetic resonance imaging (R-fMRI) data of a single subject
is usually stored as a correlation matrix with ten thousand
by ten thousand dimensions. To investigate the underlying
functional brain connectivity in such a high dimensional space
is challenging itself [1].

Conventionally, the functional brain connectivity is repre-
sented by features derived from the functional brain network
constructed from the correlation matrix [2]. This approach
ensures that computational analysis can be realized with
traditional machine learning methods. The popular features

that have been extensively studied are graph-theoretical mea-
sures [3][4] and subgraph patterns [5] in the functional brain
networks. Such features, however, are limited to their formal-
ized definition and can not summarize the whole picture of
the data.

The deep-learning method, on the other hand, is a powerful
approach to represent high dimension data. However, it mostly
takes no more than thousands dimension data as input once at
a time [6]. Hence, simply putting the high spatial resolution
fMRI data into a deep network architecture is not feasible. The
deep neural network has to store input data, weight parameters
and activations to propagate their information through the
network while training [6]. Current memory capacity is not
enough for millions-dimension data such as the voxel-based
brain network constructed directly from fMRIs. Furthermore,
low dimension representations learned from deep neural net-
works are task-related, which are entangled with the predefined
architecture and are not interpretable.

Existing works, such as tensor-based network embed-
ding [7] and deep learning for functional network min-
ing [8][9], have tried state-of-art machine learning methods
on a region-based network, where the network is smaller than
100×100 dimensions. Nevertheless, the region-based network
neglected the inter-region information. It has been studied that
the voxel-based network shows more prominent characteristics
than region-based network, such as small-world property [10].

In this paper, we study a novel representation, namely
distributional [11], which can capture the whole picture of
the functional connectivity information in a brain. We propose
a framework for analyzing distributional representations in a
visible way. Moreover, we suggest an approach to find better
distributional representations for individuals and centroids of
groups. By computational evaluation and investigation on
the distributional representation, we demonstrated that our
approach obtains the following findings:
• Visual distinction of the brain disorder group from the

control group. Such distinction can be enhanced dramat-
ically by either suppressing the variation across subjects
in a group or augmenting the difference between cen-
troids of groups, which are suggested by our designed



mappings.
• The potential to capture some valuable information which

is neglected from the traditional ones. This is promising
for further designs of better algorithms such as clustering
and classification. The reported state-of-art results on
large data set achieved 71.2% accuracy in identifying a
brain disorder [8], which still has a lot of room to be
improved.

• The (visible) reason why the threshold goes down from
0.4 in a voxel-based network to 0.2 in a region-based
network. This can guide the threshold selection for tradi-
tional brain network construction.

• The (visible) reason whether a voxel-based or a region-
based analysis is suitable for analyzing a given brain
disorder. This can give a (visible) guide to future study
for identifying a mental disease in ether voxel-level or
region-level.

II. DEFINITIONS AND TERMINOLOGIES

A. Functional brain data

Resting state functional magnetic resonance imaging (R-
fMRI) measures fluctuations in blood-oxygen-level dependent
(BOLD) signals in subjects at rest [4]. The correlations in neu-
ral activity between distant brain regions can be measured from
the correlation values between the time series of BOLD signals
in pairwise regions. The correlation measures can be Granger
causality, independent components, mutual information, and
most commonly used Pearsons correlation coefficient values.
A functional brain network can be constructed by regarding
distant brain regions as nodes and the correlations between
regions as edges.

The smallest region unit in R-fMRI is voxel which is a three
dimensional pixel. Usually the size of the voxel-based net-
works are approximately 16,000×16,000, while region-based
networks are 90×90 [10]. Region-based networks extracted
brain regions by structurally defined anatomical masks. The
number of high-resolution regions is close to the scale of the
voxel-based network, whereas the number of low-resolution
regions is close to the scale of the region-based network.

B. Distributional representation for a single subject

1) Correlation distribution: A functional brain network can
be represented by a correlation matrix R, where each entry rij
represents the Pearsons correlation coefficient between region
i and region j. The correlation distribution counts the number
of occurrences of each different correlation value in the corre-
lation matrix R. As the correlation matrix R is symmetric, we
only count the value of the entry rij that satisfies i > j. The
correlation distribution can be approximated by calculating the
histogram for discretized correlation values.

The advantage of such distributional representation over the
correlation matrix is that it will not be affected by the errors
from the anatomical alignment across brains.

2) Joint distribution: However, the spatial information be-
tween two regions can not be captured by the correlation
distribution. We introduce a distance distribution which counts
the number of occurrences of each different distance value in
a distance matrix D, where the entry dij is the Euclidean
distance between the centers of regions i and j in a brain.
Again, we only count the value of the entry dij that satisfies
i > j, as the distance matrix D is symmetric.

The joint distribution, denoted by h(r, d), for a subject
is a correlation-distance joint distribution. It represents the
probabilities of co-occurrence of different possible correlation
values and different possible distance values between regions
within a brain. It can be approximated by calculating a two-
dimensional histogram, called join histogram, for pairwise
discretized correlation values and discretized distance values.

3) Conditional distribution: Because the distance distribu-
tion is a non-uniform distribution, different distance values will
give different contribution of spatial information to the joint
probability distribution. To reduce this side effect, we consider
a conditional distribution of correlation given distance.

The conditional distribution, denoted by h(r|d), for a sub-
ject is a correlation-distance conditional distribution. It repre-
sents the correlation distribution when the distance between
the regions is given to be a particular value. It can also
be approximated by calculating a two-dimensional histogram,
called conditional histogram, for pairwise discretized correla-
tion values and discretized distance values.

The conditional distribution can be regarded as a represen-
tation mapped from the joint distribution. Such a mapping
can be denoted as a distribution function Γ, e.g., h(r|d) =
Γ(h(r, d)) = h(r, d)/D(d), where D(d) is the distance distri-
bution.

4) Distributional representation definition: The distribu-
tional representation hb(r, d) for a subject b can be the joint
distribution h(r, d), the conditional distribution h(r|d), or any
other distributions to which the joint distribution h(r, d) is
mapped.

C. Group of subjects

Investigating the difference of patients with brain disorders
from normal controls can facilitate the study of disease mech-
anisms and for informing therapeutic interventions.

All the subjects that we concern are numbered 1, 2, ..., N .
The group that consists of all the subjects is viewed as the set
B = {1, 2, ..., N}. The group of subjects with brain disorders
is regarded as a subset A of the set B, whereas the control
group is denoted by another subset T of the set B, where
T ∩A = ∅ and T ∪A = B.

The centroid of subjects in a group can be statistically
characterized as the mean of the distributional representations
for the subjects in the group.

The mean, denoted by µY (r, d), of the distributional repre-
sentations for subjects in a group Y is a binary function as
follow:

µY (r, d) =
1

|Y |
∑
b∈Y

hb(r, d), (1)



where |Y | is the number of subjects in the group Y and Y
is a subset of B, i.e., Y ⊂ B. We call the mean µY (r, d) the
centroid of the group Y .

D. Variation across subjects

The centroid is not enough to characterize a group, due to
the variation across subjects within the group.

One way to measure the variation across subjects is the
entropy of the group. The entropy, denoted by SY (r, d), of a
group Y is a binary function as follow:

SY (r, d) = −
∑
b∈Y

hb(r, d) · log hb(r, d). (2)

The higher the entropy at a given pair (r, d), the lower the
variation at the pair (r, d) is.

An alternative approach is the standard deviation of distri-
butional representations. The standard deviation, denoted by
σY (r, d), of subjects in a group Y is a binary function as
follow:

σY (r, d) =

√
1

|Y |
∑
b∈Y

[hb(r, d)− µY (r, d)]2. (3)

However, the standard deviations for different groups are not
comparable. Hence, we consider the coefficient of variation
(CV), which is a standardized measure of dispersion of a
probability distribution. The coefficient of variation, denoted
by VY (r, d), of a group Y is also a binary function, which is

VY (r, d) =
σY (r, d)

µY (r, d)
. (4)

III. INVESTIGATION OF DISTRIBUTIONAL
REPRESENTATIONS

In this paper, we demonstrate that the distributional repre-
sentation is valuable in designing algorithms for differentiating
groups of subjects, not just useful for finding outliers (alienate
shape in visualized distribution [11]).

Figure 1 shows the proposed framework for analyzing
distributional representations. We first highlight the body in-
formation in the joint distributional representation by blocking
the visual noise. Then we try to find group characteristics by
visualizing the variation across subjects in the group . The
group difference can be visualized by the contrast between the
variation of the patient group and the variation of the control
group. After that, we can analyze the group difference and
extract group features to design distribution mapping functions
for better representations. Finally, the quality of the mapped
distributional representation will be evaluated with further
analysis.

A. Data description

The functional brain data we analyzed here is from the
ADHD-200 sample. This public data set collected resting-
state fMRI scans from subjects with ADHD and typically
developing controls in 8 international imaging sites. We only
analyzed the preprocessed data from NYU with the largest
number of subjects. The preprocessed data used NIAK pipeline

Fig. 1. Framework for analyzing distributional representations.

and has extracted time courses from around 3000 regions
of interests [12]. One or two resting-state fMRI scans were
acquired for each subject in the NYU data. We picked the first
scans (216 subjects) and eliminated the questionable subjects
(marked along with the data) and the outliers (see [11]), which
leads to 173 subjects (for the set B) for analysis in this study.
84 subjects (for the set T ) are typically developing children
(TDC) and 89 subjects (for the set A) have ADHD.

The preprocessed data is available at http://preprocessed-
connectomes-project.org/adhd200/.

B. Visual variation

Fig. 2. Measures of the variation across joint histograms, each with 200×200
bins, of all subjects.

We visualize the variation of distributional representations
across all the subjects by two measurements, the entropy
SB(r, d) and the coefficient of variation VB(r, d).

Figure 2(a) shows the entropy SB(r, d), whereas Figure 2(b)
shows the coefficient of variation VB(r, d). We can see that
the entropy SB(r, d) has a pattern similar to the one of the
coefficient of variation VB(r, d). The pink area of the former
occupies the same region as the blue one of the latter does in
the distance-correlation plane. This implies that both of them
are able to measure the variation across of subjects.

However, the area with a higher value of the entropy
SB(r, d) corresponds to the one with a lower value of the
coefficient of variation VB(r, d). For instance, the pink area,
which reaches at the highest value, of the entropy SB(r, d)
corresponds to the blue area, which reaches at the lowest value,
of the coefficient of variation VB(r, d). This means that the
higher the entropy of an area, the lower value the variation of
the area has. Moreover, the coefficient of variation VB(r, d)
shows a wider range of values than the entropy SB(r, d) does,
see the color bars in Figure 2.



Fig. 3. The coefficient of variation across the joint distributional representations of subjects in a group.

One advantage of visualized variation is that it helps to
remove visual noise of distributional representations.

There are many dots around the boundary of the colorful
part in both (a) and (b) of Figure 2. These high values of
variation affect the appearance of the representation, which
makes the important area overwhelmed by the visual noise.
We regard as visual noise the count value smaller than a given
value th in the joint histogram of the centroid µB(r, d). Here,
the given value th is set to 5, which is 5% of the mean of the
count values in the histogram. The visual noise can be removed
to highlight the main body for visualization. Figure 3 shows
the variations after the visual noise removal. The number of
bins after noise removal becomes 14092 instead of 200×200.

Notice that the visual noise should not be removed in com-
putational analysis. Our experiments show that any arbitrary
removal will influence the performance of the representation.
We think that the visual noise is indispensable to the integrity
of the distributional representation.

C. Distinction of brain disorders against controls

The coefficient of variation across the joint distributional
representations of subjects in either of the groups TDC and
ADHD is shown in Figure 3(a) and (b), respectively. The
variation of the group ADHD is apparently greater than the
variation of the group TDC in the upper region of the distance-
correlation plane. Subtracting the variation of the group TDC
from the variation of the group ADHD results in the variation
difference in Figure 3(c). This implies that the connectivity in
the group ADHD has larger variation than the control group
in the region where the correlation value is greater than 0.4.
On the other hand, small variation means stable connectivity
when the correlation value is below 0.4.

When we subtract the centroid of the group TDC from the
centroid of the group ADHD, we get the group difference as
shown in Figure 4(d). The middle part of the body has higher
contrast than the upper part. Considering the fact that the
middle part has almost none variation as shown in Figure 3(c),
we can deduce that the middle part of the distributional

Fig. 4. The centroid of the conditional histograms in a group and the centroid difference between two groups.



representation has stable characteristics to differentiate the
group ADHD from the group TDC. More interesting finding is
that there are positive and negative parts from the subtraction
(Figure 4(d) and (e)). This means that the two distributional
representations for the centroids of the two groups cross over
with each other in a three dimensional space. This difference
between the two groups can not been seen directly from
visualized distributional representations in Figure 4(a)-(c).

IV. BETTER DISTRIBUTIONAL REPRESENTATIONS

Inspired from the above investigation, we would like to
1) suppress areas with large variation across subjects in a
group, and 2) enhance the group difference to provide strong
indicators of group characteristics in the representation. We
will discuss the effectiveness of this two principles to improve
the distributional representation in the following subsections.

It is believed that a good representation can easily separate
groups of subjects. Hence, we design a (rough but quick)
test to the performance of the distributional representation in
categorizing subjects.

A. Group differentiation method

Here, we use a simple approach to distinguish which group
a subject belongs to.

The difference for two distributional representations h1(r, d)
and h2(r, d) can be measured by the Kullback-Leibler (KL)
divergence

DKL(h1||h2) =
∑
i,j

h1(ri, dj) log
h1(ri, dj)

h2(ri, dj)
(5)

where ri and dj are discretized values of correlation and
distance, respectively.

We regard that a subject b ∈ B falls into the group A if its
distributional representation hb(r, d) is closer to the centroid
of the group A than the centroid of the group T . Hence, by
simply comparing KL values KLT (hb) and KLA(hb) of an
individual b, where

KLT (hb) = DKL(hb||µT ), (6)

KLA(hb) = DKL(hb||µA), (7)

we can guess that the individual b falls into the group that has
the smaller KL divergence to it.

We use sensitivity (true positive rate) to measure the perfor-
mance of a representation in identifying subjects. The sensi-
tivity for the group TDC is the percentage of healthy subjects
that are correctly identified as TDC, whereas the sensitivity for
the group ADHD is the percentage of individuals with ADHD
that are correctly identified as ADHD. The total performance
is measured as the percentage of individuals that are correctly
identified in the whole data set B.

B. Improvement by variation suppression

Large variation across distributional representations of sub-
jects in a group will lead to wrong judgment in distinguishing
group characteristics. Hence, we transform the larger varia-
tions into smaller ones, to reduce their contributions to the
representation. For each subject b in a group Y , we have the
mapping function

ΨY (hb(r, d)) = exp(−αVY ) · hb(r, d), (8)

where α is a coefficient parameter that can be changed. Some-
times, the mapping function ΨY is written as ΨY (hb(r, d))α
to emphasis the parameter α.

Thus, the mapped centroid of the group Y will be

µY ΨY (r, d) =
1

|Y |
∑
b∈Y

ΨY (hb(r, d))

=
1

|Y |
∑
b∈Y

exp(−αVY ) · hb(r, d).
(9)

To evaluate the mapping function Ψ, we calculate the
mapped centroids µTΨT (r, d) and µAΨA(r, d) for groups
TDC and ADHD, respectively. For each subject b in the
group B (the whole data set), we calculate two mapped repre-
sentations ΨT (hb(r, d)) and ΨA(hb(r, d)), and then calculate
the KL divergence from either of groups TDC and ADHD
respectively by

KLT (hb) = DKL(ΨT (hb)||µTΨT ), (10)

KLA(hb) = DKL(ΨA(hb)||µAΨA). (11)

Figure 5 illustrates the computing procedure of the KL diver-
gence with the mapping function Ψ.

T ΨT (T ) µT ΨT (r, d)

B

ΨT (B)

ΨA(B)

KLT

A ΨA(A) µAΨA(r, d)

KLA

ΨT µT

ΨT

ΨA

ΨA µA

Fig. 5. Illustration for the mapping function Ψ and the KL divergences from
the centroids to each subjects. The concrete arrows represent unary functions,
whereas the dashed arrows represent binary operations.

Figure 6 shows the performance of Ψ with different values
of α, ranged from 0 to 100 with an interval length of 0.5.
We can see that the total performance climbs steadily as α
increases and reaches to 90% eventually. The performance for
identifying ADHD keeps raising until about 97%, whereas the
performance for identifying TDC remains around 85% with
some fluctuations.



Fig. 6. Performance of Ψ(h(r|d)) with different values of α.

The number of individuals that are correctly identified in
either of groups TDC and ADHD with the mapping function Ψ
is shown in Table I, which transform the conditional represen-
tation h(r|d) into the mapped representation Ψ(h(r|d)). We
can see that the parameter α that gives the best performance is
52.5 or 76.0. It can distinguish 90.17% subjects correctly, i.e.,
156 out of 173 subjects in the set B are identified correctly
(see the last column). The mapped representation improves
11.56% than the one without mapping. The performance
without mapping is 78.61% (see the row at α = 0.0).

TABLE I
RESULTS OF Ψ(h(r|d)) WITH DIFFERENT VALUES OF α.

α TDC ADHD Total

0.0 72(85.71%) 64(71.91%) 136(78.61%)
0.5 67(79.76%) 65(73.03%) 132(76.30%)
8.0 75(89.29%) 69(77.53%) 144(83.24%)

11.0 73(86.90%) 69(77.53%) 142(82.08%)
16.5 74(88.10%) 74(83.15%) 148(85.55%)
19.5 73(86.90%) 77(86.52%) 150(86.71%)
23.5 71(84.52%) 78(87.64%) 149(86.13%)
52.5 72(85.71%) 84(94.38%) 156(90.17%)
62.5 70(83.33%) 84(94.38%) 154(89.02%)
76.0 70(83.33%) 86(96.63%) 156(90.17%)

The season why the mapping Ψ can largely improve the
performance for the group ADHD is that there are some ares
with large variation across distributional representations of

subjects in the group ADHD as shown in Figure 3(b), which
can be suppressed effectively by the mapping Ψ.

C. Discovery of the reason for threshold selection
If we subtract the centroid µTΨT (r, d) of the group TDC

from the centroid µAΨA(r, d) of the group ADHD, we have
the contrast difference shown in Figure 7. In comparison to
Figure 4, the transformed distributional representation leads
to a more balanced difference between positive and negative
values.

The axis of the distance in the distance-correlation plane
reflects the region resolution. The bigger the distance, the
lower the region resolution, and vice versa. This gives visible
reason to determine the region resolution for analysis. For
example, it is suitable for high region resolution analysis if a
brain disorder shows significant difference around small dis-
tance values; otherwise, it is suitable for low region resolution
analysis.

In Figure 7(b), we can tell that the prominent feature for the
group ADHD is the green part. The changes along distance
values indicate the connectivity changes along with resolutions
of the regions. At a distance smaller than 3, the correlation
ranging from 0.4 to 0.7 has higher probabilities. This implies
that the range (from 0.4 to 0.7) of the correlation is suitable for
analyzing the brain disorder ADHD in a high resolution region
level. This is consistent with the common agreement for the
correlation threshold selection in constructing functional brain
networks. In constructing voxel-based networks, usually the
lower bound of the correlation threshold is 0.4 to ensure the
sparsity of the adjacency matrix [2], while the upper bound is
0.7 to avoid fragmentation and graininess [10].

Furthermore, the middle parts in Figure 7(b) and (c) show
that the prominent group difference is in a correlation range
from 0 to 0.25, which implies that it is suitable for a lower
resolution region (e.g., the distance around 30). Again, such
a correlation range is consistent with the threshold reported
in [13], whose authors studied 400 regions in the ADHD-200
sample.

Moreover, the correlation value below 0.4 also contains
valuable information as it is shown in Figure 7(b). We believe
that the green part covering the area of the correlation range
from 0.2 to 0.4 with distance values smaller than 25, which is
often neglected for the network analysis, will be useful with
further studies.

Fig. 7. Group difference with the mapping function Ψ of conditional histograms given α = 0.5.



The discussion above not only suggests that our visualized
distributional representation supports existing works, but also
implies that our work can guide for functional network anal-
ysis for other datasets if the group connectivity difference is
unclear.

D. Feature enhancement

To further improve the representation, the difference be-
tween groups TDC and ADHD can be enhanced by the
transformation

Φ(hb(r, d)) = [µTΨT (r, d)β−µAΨA(r, d)β ]2 ·hb(r, d), (12)

where b ∈ B and β is a coefficient parameter that can be
changed.

We compare the mapped representation Φ(hb(r, d)) for
each subject b ∈ B with fixed centroids µAΨA(r, d) and
µTΨT (r, d) respectively by

KLT (hb) = DKL(Φ(hb)||µTΨT ), (13)

KLA(hb) = DKL(Φ(hb)||µAΨA). (14)

Figure 8 illustrates the procedure of calculating the KL diver-
gence for the mapping Ψ.

B Φ(B)

µT ΨT (r, d)

µAΨA(r, d)

KLT

KLA

Φ

Fig. 8. Illustration for the mapping function Φ and the KL divergences from
the centroids to each subjects. The concrete arrows represent unary functions,
whereas the dashed arrows represent binary operations.

From Equation (9), we have µAΨA(r, d) = µA(r, d) and
µTΨT (r, d) = µT (r, d) when α = 0.0. For this reason, we
regard that the performance of the mapping Φ has nothing to
do with the mapped centroids in the case of α = 0.0. Table II
shows the number of individuals that are correctly found in
each group when α = 0.0, where the conditional represen-
tation h(r|d) is transformed into the mapped representation
Φ(h(r|d)). Figure 9 shows the performance with different
values of β, ranged from 0.1 to 9.9 with an interval length of
0.1. The best performance is 94.22%, which improves 15.61%
in comparison to 78.61%, the performance without mapping
(see the row at α = 0.0 in Table I). This reveals that the
mapping Φ is also effective.

The mapped centroids given different values of α, ranged
from 0.1 to 0.5 with an interval length of 0.1, have been tried.
The best performance is found at α = 0.1 and β = 0.7. The
number of individuals that are correctly found in each group
given α = 0.1 is shown in Table III. Figure 10 shows the
performance with different values of β from 0.1 to 9.9 with
an interval length of 0.1.

The best performance under this condition can distinguish
95.38% subjects correctly, i.e., 165 out of 173 subjects in the

TABLE II
RESULTS OF Φ(h(r|d)) WITH DIFFERENT β GIVEN α = 0.0.

β TDC ADHD Total

0.1 75(89.29%) 80(89.89%) 155(89.60%)
0.5 79(94.05%) 84(94.38%) 163(94.22%)
0.8 78(92.86%) 82(92.13%) 160(92.49%)
1.0 79(94.05%) 82(92.13%) 161(93.06%)
1.8 80(95.24%) 73(82.02%) 153(88.44%)
2.7 84(100.00%) 70(78.65%) 154(89.02%)
8.5 84(100.00%) 72(80.90%) 156(90.17%)

Fig. 9. Performance of Φ(h(r|d)) with different β given α = 0.0.

TABLE III
RESULTS OF Φ(h(r|d)) WITH DIFFERENT β GIVEN α = 0.1.

β TDC ADHD Total

0.1 77(91.67%) 80(89.89%) 157(90.75%)
0.7 82(97.62%) 83(93.26%) 165(95.38%)
1.0 82(97.62%) 81(91.01%) 163(94.22%)
1.1 82(97.62%) 82(92.13%) 164(94.80%)
3.0 84(100.00%) 69(77.53%) 153(88.44%)
8.4 84(100.00%) 72(80.90%) 156(90.17%)

Fig. 10. Performance of Φ(h(r|d)) with different β given α = 0.1.



set B are identified correctly (see the last column), where
97.62% and 93.26% subjects in groups TDC and ADHD are
correctly identified respectively. In comparison to the results of
the conditional distribution representation, it improves 16.77%.
This reveals that the mapping Φ is effective when the centroids
are fixed.

In Figure 9 and Figure 10, the peaks of the total performance
both appear in a range of β from 0.1 to 1.8. The performance
for either of groups TDC and ADHD diverges apart each other
when β is bigger than 1.8 and the total performance goes down
to the start point around 90%.

TABLE IV
PERFORMANCE FOR DISTRIBUTIONAL REPRESENTATIONS WITH

DIFFERENT MAPPINGS.

Representation TDC ADHD Total

h(r, d) 52(61.90%) 45(50.56%) 97(56.07%)
Γ(h(r, d)) 72(85.71%) 64(71.91%) 136(78.61%)

Ψ(α = 52.5) 72(85.71%) 84(94.38%) 156(90.17%)
Ψ(α = 76.0) 70(83.33%) 86(96.63%) 156(90.17%)

Φ(α = 0.0, β = 0.5) 79(94.05%) 84(94.38%) 163(94.22%)
Φ(α = 0.1, β = 0.7) 82(97.62%) 83(93.26%) 165(95.38%)
Φ(α = 0.3, β = 1.1) 84(100.00%) 81(91.01%) 165(95.38%)

From our experiments, we conclude that all mapped dis-
tributional representations improve the performance dramati-
cally than the joint distributional representation h(r, d), see
Table IV. The representation produced corporately by three
mapping functions Ψ, Φ and Γ raises the performance to
95.38% (see the second row from the bottom), which improves
39.31% in contrast to 56.07%, the performance of the joint
distributional representation h(r, d).

These results indicate that our findings through the data
visualization for distributional representations are promising.
More importantly, the two proposed principles, namely vari-
ation suppression and feature enhancement, for designing
mappings of distributional representations are effective for
distinguishing subjects between groups, though our test is not
a classification task.

V. CONCLUSIONS

Our analysis on the group difference with visualized dis-
tributional representations can explain the threshold selection
range for the main-stream functional network construction in
both voxel-based and region-based. Moreover, the area with its
correlation below 0.4 also shows a prominent group difference
in our distributional representations. This phenomena supports
the idea from researchers who think that weak connections
in the brain also have potential valuable information for
functional network construction [14][15]. Hence, we believe
that visualized distributional representations can guide the
brain connectivity study for other unclear brain disorders.

Two simple mapping functions have been designed to en-
hance the group features that are found in the visualized dis-
tributional representation. The improvement on distinguishing
subjects from different groups indicates not only the effective-
ness of the visualization approach but also the informativeness

of the distributional representation. The performance, raised by
the two mapping functions, in differentiating groups is already
highly above chance without further exploration in more
distribution mappings and parameters’ optimization. This is
promising for applying distributional representations to further
studies of algorithms, such as clustering and classification for
brain disorders.

In conclusion, the distributional representation provides 1)
a whole picture of the functional connectivity in the brain
in contrast to traditional functional network analysis, 2) in-
terpretable features for functional brain networks other than
task-related representation with deep-learning approaches, 3)
informative visualization analysis, and 4) effective guidance
for further analysis in group difference.
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