
Developmental Neural Learning for a Visual
Concept Steering Control Task

Jiating Zhu

June 3, 2015

1

Acknowledgements

I would like to thank my supervisor, Dr Andrea Soltoggio, for

his support and guidance throughout my time as his student. His

enthusiasm, encouragement and teachings are priceless.

2

Abstract

A developmental neural learning method is proposed in this re-

port. The problem analyzed consists in a learning process in which

both low and high level concepts need to be progressively acquired.

Low level concepts are average orientations of lines that can be ob-

served in visual stimuli. Higher level concepts are control policies to

be learned according to the average orientations of lines in the visual

stimulus. The challenge is to devise an autonomous neural learning

process that abstracts features from low to high level, and operates

using both unsupervised and reinforcement learning paradigms. A

three-layer network that learns visual concepts of directions is trained

by means of a novel three-step procedure, which is also the main focus

of the current study. The experimental results show that the agent

can successfully identify the visual concepts of directions and react to

the images of directions correctly. The accuracy of the direction iden-

tification is high when using the three-step training method, whereas

the accuracy becomes worse when skipping any step in the proposed

training method. The relationship and interplay of the three training

steps and the principle of the training method are discussed. This

result suggests that all three steps are essential to develop a correct

network topology for this particular learning problem. In short, a pro-

cedure for autonomous and effective neural learning is proposed for a

complex perception and control task.

Keywords: Developmental neural learning, Unsupervised learn-

ing, Reinforcement learning, Visual concept learning, Control task.

3

Contents

1 Introduction 5
1.1 Overall Aim . 5
1.2 Background . 5
1.3 Scope and Objective . 5
1.4 Motivation . 6
1.5 Contribution and Related Work 8

2 Problem Definition 9

3 Methods 11
3.1 Learning Process . 11
3.2 Network Structure . 12
3.3 Agent Action . 15
3.4 Autoencoder Component . 15

3.4.1 Feedforward . 16
3.4.2 Backpropogation . 17
3.4.3 Weight Decay . 18
3.4.4 Sparsity Penalty . 18

3.5 Reinforcement Component . 19

4 Expriments 20
4.1 Programming . 20
4.2 Parameter Setting . 22
4.3 Exploring Results in Autoencoder 24
4.4 Exploring in Reinforcement Learning 24
4.5 Exploring Effectiveness in Patch-based Reinforcement Learning 26

5 Results and Disscussion 29
5.1 Why Unlabeled Images of Natural Scenery? 29
5.2 Why Labeled Images of Representative Directions? 30
5.3 Why Labeled Images of Directional Instances? 31

6 Conclusion 33

4

1 Introduction

1.1 Overall Aim

This project aims at providing an insight onto the dynamics of neural learn-

ing when the task is a combination of perception (image classification) and

control policies (an agent performing steering actions). Although the net-

work used has three layers, the type of learning can be applied to deeper

structures for improve classification and control capabilities.

1.2 Background

Data representation is a key factor in the performance of machine learning.

The inability to extract and manage the characteristic information from data

is the major weakness of current learning algorithms [1]. Deep learning has its

advantage in representation learning and has some success in both academia

and industry, such as speech recognition and signal processing, object recog-

nition, natural language processing, and multi-task, transfer learning and

domain adaptation [1].

Deep learning methods are formed by the composition of multiple non-

linear transformations. Pre-training each layer with an unsupervised learning

method, starting with the first layer, can get a better training result with

better regions in the parameter space. This is the common idea in both Re-

stricted Boltzmann Machines (RBMs) and autoencoder training algorithms

(two popular deep learning methods). More specifically, each layer is trained

sequentially with an unsupervised learning algorithm [2], using as input the

output of a previous layer. The higher level features extracted by unsuper-

vised learning can be used as input or initialization to a supervised learning

structure [1].

1.3 Scope and Objective

The main idea is to train the network with autoencoder and reinforcement

learning together for an agent control task. The first part of the training,

5

Aim Objective

Understanding the main Training a network with autoencoder
principles of deep learning and reinforcement learning
Application Agent control task
Image classification Agent should react to images with

appropriate responses

Table 1: Aims and objectives of the project

that of the autoencoder, is meant to learn features of the visual inputs. The

autoencoder neural structure is often used to build deep learning networks,

and is reported to perform well in real-time control tasks [3]. Reinforcement

learning using a modulated Hebbian rule [3] is a supervised learning. The

features generated from the autoencoder are the input for the reinforcement

learning. The control task is that the agent should react to images with

correct responses. This shows the basic principle of the deep learning, which

uses the features from the unsupervised learning (autoencoder) as the input

of a supervised learning structure (reinforcement learning). Table 1 shows

how the objective is related to the overall aim of the project.

1.4 Motivation

Human have rich experience in educating their descendants. Can this experi-

ence be applied to machine learning to improve the performance of learning

algorithms? This issue is explored in this report. Playing could be con-

sidered as a learning process whose impact and utility to achieve certain

survival goals are not often very clear. However, it is easy to hypothesis that

it is a fundamental stage in learning. When a new concept is introduced to

a child, the teacher often points out connections between the concept and

what the child experienced from playing. This helps the child to understand

the concept. The process of practicing is for the child to learn some concrete

instances in the target field. We focus on this specific learning pattern and

apply it on an agent control task, which lets an agent understand and react

6

to some visual concepts.

The problem considered in this study appears to require a two-stage com-

putation, which is utilised by an agent to learn visual concepts in an control

task (see Figure 1[6]). It is important to notice that reinforcement learning

can occur only if higher level features are correctly extracted from low level

visual inputs. Thus, learning appears to build up through stages. Accord-

ingly, the first stage is to train the agent with unlabeled images of natural

scenery . The agent learns features from the unlabeled images through un-

supervised learning. These features are useful in the next stage, so they are

stored to be transferred to the next stage.

perception policy

Input
image

unsupervised
training of

deep auto-
encoder

Low-dimentional
Feature Space

 Reinforcement
Learning Action

Figure 1: The two-stage framwork

The second stage is to use the reinforcement learning method to train

the agent to perform tasks that result in a reward from the environment.

The training in this stage is two-fold. The first fold is to train the agent

with labeled images of representative directions to learn visual concepts of

directions. The second fold is to refine the learning from the first fold so that

the agent can identify the visual concepts from images of directional instances

(understand the visual concepts in the target domain). Therefore, in the

second fold, the agent is trained with a few of labeled images of directional

instances.

The process of learning images of directional instances from the features

learned from the images of natural scenery is the process of applying the

knowledge in one domain to another domain, which is considered as transfer

learning [4][5]. Recently, deep learning has shown good performance in trans-

fer learning [1][2]. A current focus of research is in integrating deep learning

and reinforcement learning in agent control tasks [3][6][7]. However, transfer

7

learning and vision concept learning [8] in an agent control task are not fully

investigated.

1.5 Contribution and Related Work

A control task that has been addressed by means of the integration of an

autoencoder and supervised learning is a navigation task in a multiple path

environment [3]. The features learned in this control task are the data from

the sensors (crumb sensors) in the path environment. The work presented in

[3] is extended here by focusing in particular on the acquisition of features

from images rather than low-dimensional crumb sensors in [3].

In some other works [6][7], integrating an autoencoder and a reinforce-

ment learning for an agent control task has been used. The agent in those

studies makes decisions on the control policies by evaluating its environment.

A camera captures the images of the environment with the location of the

agent. The images of the environment with the location of the agent serve

as the guide for the agent to make control policies. A deep autoencoder is

used to capture features from the images. Images are similar when the agent

stays in the adjacent locations. Therefore, the agent determines its location

by classifying images. The reinforcement learning is used to train the agent

to make a good decision on different locations. However, in this project, the

visual inputs are not particular instances of location, but rather general con-

cepts describing directions. Thus, as opposed to [6][7], this study investigates

the acquisition of higher level general concepts, rather than policies dictated

by unique input data. The challenge in this project is not to determine the

location of the agent, but to identify the visual concepts conveyed by images.

In order to investigate how general features and concepts can be learned,

this study uses images of natural scenery that do not relate to the control

task in which the agent engages later on in training. This is particular im-

portant because it demonstrates that the acquisition of features from various

images and patterns can be of use also when performing on different images,

which however share some common patterns. A framework called “self-taught

8

learning” [5] has used images of outdoor scenes to classify Caltch101 images

(images of real life objects, such as an apple and a chair). The classification

accuracy is promising. This gives the evidence of the possibility of using

unlabeled nature images to learn features that can be of use later on for dif-

ferent tasks. After the first learning stage with natural images, handwritten

direction lines are given to the agent as a focused input set to refine extrac-

tion of features that will be useful in the following control task. However,

the task in this project is not the classification as in “self-taught learning”[5],

but to identify the visual concepts.

The visual concept learning was proposed with Bayesian algorithms [8],

but the way it learns visual concepts is different from the approach in this

project, where a neural network is used for learning visual concepts for the

control task.

The reinforcement learning in this project employs a modulated Hebbian

rule [3]. However, a fresh meaning of the modulation factor in the rule is

given in this report. The modulation factor in this report functions as a filter

for irrelevant information when training with instances of visual concepts.

With the modulation factor, the agent can tell if a patch of an image has the

information of the visual concepts the image might convey.

2 Problem Definition

In a driving problem, an agent might respond to a visual scene when it is

steering a vehicle. That is to say, the agent should decide how it steers the

vehicle based on what it sees in front of it. Different visual scenes might

convey the same visual concept. The agent might react with the same action

to those different visual scenes. For example, the agent should stop when

there is a stop sign on the road. The agent should also stop when there is a

man in front of it posing a stop gesture. Although these scenes are different,

they both convey the same concept, stop. Therefore, the concept conveyed

by the visual scene that the agent captures is important. The appropriate

control actions to be sent in order to drive correctly depends on the visual

9

concept. Thus, the control task for the agent is to react with the same action

to every instance image of the same visual concept.

In this report, the visual concepts that an agent should learn are four

directions, which are left, right, straightforward and horizontal(see Figure

2). An agent should react to the four visual concepts as turning left, turning

right, going straightforward and keeping waiting respectively.

Handwritten images in Figure 3 are instances of the four visual concepts.

The features in the instance that are relevant to driving are the orientations

of the lines. Images No.1, No.5, No.9, No.13, No.17 and No.21 in Figure 3

are all instances of the same visual concept, the right direction. A successful

agent should react as turning right to any given one of these images. The

instances and their corresponding visual concepts are listed in Table 2.

The images of instances in the same visual concept usually do not appear

similar to each other, but share the same characteristic. Learning visual

concepts [8] is different from learning in facial recognition or classification of

handwritten digits. In the visual concept learning, different objects might

be regarded as in the same category. For example, images No.1 and No.5 in

Figure 3 look different. The former has 7 lines whereas the latter has 1 line.

However, they are instances of the same visual concept, the right direction.

In contrast, images of different faces are often regarded as faces of different

persons in the facial recognition, and images of different digits are regarded

as different numbers in the classification of handwritten digits. However, a

face is the face whether is observed frontally or sideways. Therefore, it can

be concluded that visual concept learning is an ubiquitous principle in vision

and control.

(a) Right (b) Left (c) Straightforward (d) Horizontal

Figure 2: 8× 8 pixel images of representative directions.

10

!! ! ! ! ! ! ! ! ! ! No.1! ! ! ! ! ! No.2! ! ! ! ! ! No.3! ! ! ! ! ! No.4! ! ! ! ! ! No.5! ! ! ! ! ! No.6! ! ! ! ! ! No.7! ! ! ! ! ! No.8!

!
! ! ! ! ! ! ! No.9! ! ! ! ! No.10! ! ! ! ! No.11! ! ! ! ! No.12! ! ! ! ! No.13! ! ! ! ! No.14! ! ! ! ! No.15! ! ! ! ! No.16!

!
! ! ! ! ! ! No.17! ! ! ! ! No.18! ! ! ! ! No.19! ! ! ! ! No.!20! ! ! ! ! No.21! ! ! ! No.22! ! ! ! ! ! No.23! ! ! ! No.24!

Figure 3: 512× 512 pixel images of directional instances.

Instances Visual Concept

No.1, No.5, No.9, No.13, No.17, No.21 Right direction
No.2, No.6, No.10, No.14, No.18, No.22 Straightforward direction
No.3, No.7, No.11, No.15, No.19, No.23 Left direction
No.4, No.8, No.12, No.16, No.20, No.24 Horizontal direction

Table 2: Instances and visual concepts

3 Methods

3.1 Learning Process

As introduced above, this study proposes a three-step learning process in-

spired by developmental learning [13]. The three steps are described follow-

ing.

Traninig Step 1 This is an unsupervised learning process using an autoen-

coder algorithm. The agent learns features from unlabeled images of

natural scenery. The images of natural scenery are images taken from

outdoor environments[14]. These learning materials are similar to what

a child sees when playing outdoor.

Traninig Step 2 This is a learning process that uses a reinforcement learn-

ing algorithm. The agent learns visual concepts from labeled images of

representitive directions. The labeled image of a representitive direc-

11

tion is a small-size image that only consists of the key feature of one

visual concept. Each visual concept has one labeled image of a repre-

sentitive direction (Figure 2). The training data in this training step

are similar to the learning materials for a child to learn from a teacher.

Traninig Step 3 This is also a learning process that uses a reinforcement

learning algorithm. The agent learns visual concepts from labeled im-

ages of directional instances (Figure 3). The labeled image of a direc-

tional instance is an image that the agent is supposed to react to. Only

a few of the labeled images are learned in this training step. The labeled

images of directional instances are similar to the practicing material for

a child to get familiar with the real problem.

Figure 4 summaries the three-step learning process. The input in the first

step is the unlabeled images of natural scenery, the input in the second step

is the labeled images of representative directions, and the input in the third

step is the labeled images of directional instances. The features that the

agent learned are shown in the images in the right hand in Figure 4. In the

first step, vague features are learned. The stripes in the top right image are

in random directions. In the second step, more precise concepts are formed.

The stripes in the middle right image are in 4 directions. In the third step,

the concepts the agent learned are refined. The directions in the bottom

right are more clear than the one in the middle right image.

The learning results in Figure 4 can be stored as weights in a network

structure. By training the weights with unsupervised (autoencoder) and

supervised learning (reinforcement learning) in the network with the inputs

in Figure 4, an agent can obtain the learned features (trained weights).

3.2 Network Structure

A three-layer neural network is built to learn visual concepts for the agent

control task. Two groups of weights should be learned in this three-layer

network, which are weights that connect the input layer to the hidden layer,

12

Unlabeled images
of natural scenery

Weights visualisation

Labeled images of
 representative directions

Labeled images of
directional instances

Weights visualisation

Weights visualisation

Step 1

Step 2

Step 3

Input Learning results

Patch-based
Unsupervised

Learning
(Autoencoder)

Reninforcement
Learning

Patch-Based
Reninforcement

Learning

Figure 4: The three-step learning process.

13

and the weights that connect the hidden layer to the output layer. The

training steps and weights update process in the network are shown in Figure

5. The autodencoder in the training step 1 is a structure that performs well

Final state

Auto-encoder training

Input
layer

Hidden
layer

Output
layer

Step 1: Input unlabeled
image of natural scenery

weightsweights

update

 Reinforcement learning

Input
layer

Hidden
layer

Step 2: Input labeled images
of representative directions

Output
layer

weights

Step 3: Input labeled images
of directional instances

update

Initial state

use
reinforcement
learning to
train the
weights

Input
layer

Hidden
layer

Output
layer

use auto-
encoder to
train the
weights

Random
weights

Random
weights

Input
layer

Hidden
layer

Output
layer

trained
weights

trained
weights

trained
weights

Figure 5: Network structure and training steps.

in reducing the dimensionality of data [9]. The idea of the autoencoder is

to train a network with at least one hidden layer to reconstruct its input.

Thus, the features in the hidden layer are what the agent learned from the

input. The reinforcement learning in the training step 2 and training step

3 is used to adjust the connections between the features in the hidden layer

and the output reaction. The idea of the reinforcement learning is to reward

the connections when the output reaction responds correctly to the input, or

to punish the connections when the output reaction responds incorrectly to

the input.

The weights change as training process going. Figure 4 shows how the

agent gets the visual concept clearer step by step. As shown in Figure 4, the

14

weights visualisation in step 1 are edge features that the agent learns from

unlabeled images of natural scenery. These edge features are not like the

ones in Figure 2, which clearly have direction patterns. The goal of the first

training step is to let the agent get familiar with edges, even the edge features

are vague. The weights visualisations in step 2 and step 3 have more clear

direction patterns than the ones in step 1. It can be seen clearly in step 3 in

Figure 4 that the top left corner of the weights visualisation looks like a left

direction stripe, the top right corner looks like a straightforward stripe, the

bottom left corner looks like a right direction stripe, and the bottom right

corner looks like a horizontal direction stripe.

3.3 Agent Action

The action of the agent responding to an image depends on the ouput of the

network. In the output layer, there are several output units. Each output

unit is asscoiated with an action that is supposed to respond to a respective

visual concept conveyed by the input image. The agent is designed to respond

to the input with the action associated with the output unit whose output

value is greater than the value of any other output unit.

3.4 Autoencoder Component

An autoencoder neural network is an unsupervised learning algorithm. It

tries to learn a function that the output values of the function are almost the

same as the input values.

In Figure 6, circles are used to represent the neurons (units) and bias units

are labeled with ”+1”. Assume training examples (x(i), y(i)) are aiven, the

output result generated from the network is hW,b(x) with weight parameter

W and bias parameter b. An autoencoder is to find hW,b(x) ≈ x so that x̂

is similar to x. A compressed representation of the input is learned in the

hidden layer. The number of the units in the hidden layer is usually smaller

than the input layer. However, the units in the hidden layer contain key

features of the input so that the output is similar to the input.

15

The sparse autoencoder method [10] used in this report has several com-

ponents, which are feedforward, backpropagation, weight decay and sparsity

penalty.

 x1

 x2

 x3

 x4
+1

+1

 x

1

 x

2

 x

3

 x

4

hW,b(x)

Layer1

Layer2
Layer3

a1
(2)

a2
(2)

Figure 6: Illustration of a 3-layer Autoencoder.

3.4.1 Feedforward

The activation function f(·) chosen to implement in the network is sigmoid

function:

f(z) =
1

1 + exp(−z)
. (1)

Activation a
(l)
i stands for the output value of unit i in layer l. a

(1)
i = xi

is used to denote ith input when l = 1. Let z
(l)
i be the input of activation

function in unit i in layer y, which means it is the the total weighted sum

of inputs to unit i in layer l with bias term. The compact equations for

feedforward process are

z(2) = W (1)x+ b(1) (2)

a(2) = f(z(2)) (3)

z(3) = W (2)a(2) + b(2) (4)

hW,b(x) = a(3) = f(z(3)) (5)

16

3.4.2 Backpropogation

Given a fixed training set {(x(1), y(1)), ..., (x(m), y(m))} with m examples, let

the error cost function for a single example be

J(W, b;x, y) =
1

2
‖ hW,b(x)− y ‖2 (6)

and the error cost function for m examples is

J(W, b) =
1

m

m∑
i=1

(
1

2
‖ hW,b(x)− y ‖2) (7)

For one interation, parameters update as follows:

W
(i)
ij := W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b) (8)

b
(l)
i := b

(l)
j − α

∂

∂b
(l)
i

J(W, b) (9)

where,

∂

∂W
(l)
ij

J(W, b) =
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i)) (10)

∂

∂bi(l)
J(W, b) =

1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)) (11)

The ”error term” for the output unit in the output layer (layer 3) is

δ(3) =
∂

∂z(3)
1

2
‖ hW,b(x)− y ‖2

= −(y − a(3)) · f ′(z(3)) = −(y − a(3)) · a(3)(1− a(3)) (12)

and the ”error term” for each node i in layer 2 is

δ(2) =
(s2+1∑

i=1

W
(2)
ji δ

(3)
)
f ′(z(2)) =

(s2+1∑
i=1

W
(2)
ji δ

(3)
)
a(2)(1− a(2)), (13)

where s2 is the number of nodes in layer 2 (not counting the bias unit).

Therefore, the desired partial derivatives:

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i (14)

∂

∂bi(l)
J(W, b;x, y) = δ

(l+1)
i (15)

17

Let

∆W (l) =
m∑
0

∂

∂W
(l)
ij

J(W, b;x, y) (16)

∆b(l) =
m∑
0

∂

∂b
(l)
i

J(W, b;x, y) (17)

Then, the weight update function is

W (l) = W (l) − α 1

m
∆W (l) (18)

b(l) = b(l) − α 1

m
∆b(l) (19)

3.4.3 Weight Decay

The wight decay parameter λ controls the importance of the weight decay

in the error cost function. It also prevent overfitting during training by de-

creasing the weight magnitude [11].The Equation (7) (error function)should

be rewritten into

J(W, b) =
1

m

m∑
i=1

(
1

2
‖ hW,b(x)− y ‖2) +

λ

2

∑
(W

(l)
ji)2 (20)

and Equation (18) (weight update function) should be rewritten into

W (l) = W (l) − α
[1

m
∆W (l) + λW (l)

]
(21)

3.4.4 Sparsity Penalty

By imposing a sparsity constraint on the hidden units, the autoencoder can

discover interesting structure even if the number of the hidden units is large

[10].

Let the average activation of hidden unit j

ρ̂j =
1

m

∑
i=1

m[a
(2)
j (xi)] (22)

and let the average activation of each hidden neuron j to be close to zero,

ρ̂j = ρ, (23)

18

where ρ is a sparsity parameter (a small number, say 0.05).

The sparse penalty term is to achieve Equation (23). The sparse penalty

term

KL(ρ ‖ ρ̂j) = ρlog
ρ

ρ̂
+ (1− ρ)log

1− ρ
1− ρ̂

(24)

is based on Kullback-Leibler(KL) divergence [10]. KL(ρ ‖ ρ̂j) = 0 if ρ̂j = ρ.

The overall cost function is now

Jsparse(W, b) = J(W, b) + β

s2∑
j=1

KL(ρ ‖ ρ̂j), (25)

where J(W, b) defined in Equation (20), and β is the parameter that controls

the weight of the sparsity term.

Specifically, the “error term” for the second layer (Equation (13)) is now

become

δ(2) =
(s2+1∑

i=1

W
(2)
ji δ

(3)
)
f ′(z(2)) + β(− ρ

ρ̂i
+

1− ρ
1− ρ̂i

). (26)

3.5 Reinforcement Component

The connections between learned features and the outputs are trained with

reinforcement learning. A modulated Hebbian rule [3] is used in this rein-

forcement learning, which is

∆wi = µηxip, (27)

where wi is the weight of the connection between two neurons, xi is the in-

put data, p is the reward parameter, µ is the modulation associated with the

training sample. When the output xiwi has a correct respond to the corre-

spond input, the reward should be a positive number; otherwise, the reward

should be a negative number to punish the weight. If an input image con-

tains little information of a visual concept, it is regarded as irrelevant input

information. For example, a white background patch of an image conveys

19

nothing about the features, thus it is irrelevant input information for iden-

tifying visual concepts. The output xiwi is small when a white background

patch as input. A threshold value of the output xiwi is set to decide whether

the input is relevant or not (it is irrelevant when the output xiwi is smaller

than the threshold). In this way, this work takes the parameter µ as a filter

for the irrelevant input information (µ = 1 means the input is useful for a

visual concept, whereas µ = 0 means no learning for useless input).

4 Expriments

4.1 Programming

Programming language

In this project, the program is written in Matlab. Matlab is more effi-

cient on matrix operations. The weights in the network structure can be

stored in the matrix. Therefore, Matlab is an appropriate language for this

project. Besides, there are tutorials about autoencoders available on the

Internet. Matlab codes about gradient checking (a method checking for the

correctness of the back propagation) and L-BFGS (an optimization method

for training) are available in the tutorial [14], which is helpful for writing

a more reliable code of the autoencoder. Another programming language

option is Python, which is not used in this project. There is a tutorial about

deep learning that uses Python as the programming language [15].

Code structure

The flow chart of the code is shown in Figure 7.

Data

All labeled images are drawn in the software Pixelmator with fingers moving

on the track pad. The unlabeled images are from a tutorial [14].

Normalization

The normalization for unlabeled images of natural scenery and labeled im-

ages are different. The unlabeled images of natural scenery are normalized

20

Calculate the autoencoder Cost

Reinforcement
Learning

Weight update
without modulation

Pick patches from images

Initialise Paremeters

10 unlabeled
images of natural

scenery

4 labeled images
of directional

instances

4 labeled images of
representative

directions

Start

 Train the autoencoder

Image normalization

Max iteration or the
cost small enough?

No Yes

Get the activation results on
the hidden layer

Max
iteration?

No Yes

Reinforcement
Learning

Image normalization

Image
normalization

Weight update with
modulation

Max
iteration?

Get the activation results
on the hidden layer

Pick patches from images

Weights
visualisation

Weights
visualisation

No Yes

Stop

Accumulated output results
for each image

Get the activation results
on the hidden layer

Get the output results on
the hidden layer

Pick patches from images

Show reaction

Image
normalization

Weights
visualisation

24 labeled images
of directional

instances

Figure 7: Flow chart of the complete learning algorithm developed in this
project and code in Matlab.

21

by a feature standardization method [16]. Removing the mean-value per

example in the feature standardization method can help feature learning

[16] from images with rich information (such as the unlabeled images of

natural scenery). The labeled images are normalized by a simple rescaling

method [16]. Patches from the labeled images are black and white, simple

rescaling method is more suitbale.

Limitations

The code can only deal with back and white labeled images for now.

4.2 Parameter Setting

For the specific problem here, the three-layer neural network has 64 units

in the input layer, 25 units in the hidden layer, and 4 units in the output

layer. When the size of an input image is bigger than 8× 8, a large quantity

of 8 × 8 patches are randomly picked from the image as input (Figure 8 is

an example). This is called patch-based training, which learns features from

local patches extracted at random positions of the inputs [12]. The number of

units in the input layer and the hidden layer are references to a tutorial[10].

The 4 output units represent the 4 actions. The agent should react with the

action associated with the biggest output unit .

Figure 8: Random 8 × 8 patches
on a 512× 512 labeled image of an
instance of a visual concept.

Figure 9: Random 8 × 8 patches
on a 512× 512 unlabeled image of
natural scenery.

The following is the training process.

22

Traninig Step 1 An agent observes 10 512× 512 unlabeled images of nat-

ural scenery (10000 8 × 8 patches are randomly picked from the im-

ages) and obtains edge features through unsupervised learning (au-

toencoder). Figure 9 shows how patches are picked from a natural

image.

Traninig Step 2 The agent observes 4 8×8 labeled images of representative

directions (see Figure 2) and learns how to react through reinforcement

learning (400 times training). Here, the modulation parameter µ = 1

in the reinforcement learning .

Traninig Step 3 The agent observes 4 512 × 512 labeled images of direc-

tional instances (Instances No.9-No.12 in Figure 3) (240000 patches are

randomly picked) and learns how to react through the reinforcement

learning. When the biggest output unit in the output layer has a value

smaller than the threshold (it is set as 0.15 because white pixels are

normalized to 0.1 in this project, and 0.15 is a proper value for filter-

ing white patches through experiments), it means the input might be a

white background. Background information is useless for identifying vi-

sual concepts, so the modulation parameter µ = 0 in the reinforcement

learning. If it is not the case, set µ = 1.

Testing method

24 512×512 labeled images of directional instances in Figure 3 (1000 patches

are randomly picked in each image), where 20 of them haven’t been seen by

the agent before, are use to test how well the agent learned. For each image,

the accumulated value with the 1000 input patches in the 4 output units

are calculated. The unit with the biggest accumulated value is the activation

unit. The agent should response to the input image with the action associated

with the activation unit.

Run time

The total run time (training and testing) is 170.05 seconds. It took 30.36

seconds to train the autoencoder in the training step 1, 0.24 seconds in the

23

reinforcement learning in the training step 2, 32.06 seconds in the patch-based

reinforcement learning in the training step 3. This seems a fast training. The

training method seems to have a potential ability to be expanded to more

complex problems. It can be used in bigger networks with more images in

the future.

4.3 Exploring Results in Autoencoder

Figure 10 shows the activation results on the hidden layer with the 4 labeled

images of representative directions (images in Figure 2) as inputs. The bigger

the output value in a hidden unit, the more similar the input image is to the

hidden unit. Unit 1 in Figure 10 has four output values. The first output

value shows that the feature the unit 1 stands for is merely related with the

first input (the label image of the right representative direction, see Figure

2(a)).

As shown in Figure 10, the first input image has a large value in units 10,

18, 22, 23 and 25 (these units are circled in orange in Figure 11). As in Figure

11, features that units 10, 22, 23 and 25 stand for are in a right direction,

which are instances of the same visual concept that the input image conveys.

The feature the unit 18 stands for does not show an obvious direction pattern.

However, the overall activation result from training autoencoder reveals a

strong relation between the input images and their features, which shows

the features generated in the autoencoder can help the agent to understand

visual concepts correctly.

4.4 Exploring in Reinforcement Learning

Figure 11 shows how the reinforcement learning (in training step 2) is related

to the results of the autoencoder. The input image in the reinforcement

learning (in training step 2) is the combination of the features generated in

the autoencoder. Features in the orange circle in Figure 11 have the highest

activation values for the labeled image of representative right direction . Fea-

tures from the autoencoder can be considered as experience from observing

24

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit1

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit2

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit3

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit4

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit5

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit6

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit7

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit8

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit9

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit10

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit11

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit12

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit13

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit14

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit15

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit16

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit17

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit18

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit19

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit20

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit21

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit22

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit23

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit24

1 2 3 4
0

0.5

1

Input

O
ut
pu
t

unit25

Figure 10: Activation on the hidden layer with 4 labeled images of represen-
tative directions as inputs. The output is the activation value on the hidden
layer.

25

the environment. The input images are the label images of the representative

directions. Figure 11 shows that the input image of the right representative

direction can be calculated from the combination of the features. This is how

the visual concepts connect to the natural images.

= 0.99 × + 0.98 × + 0.68 × + 0.56 ×

Input

+ 0.17 ×

Figure 11: Features computed for a labeled image of representative right di-
rection (left) by representing the labeled image as a sparse weighted combi-
nation of features (right). These features are generated in the autoencoder.
Features from top to bottom, left to right correspond to the hidden units
1,2,3,...,25 respectively. The coefficient numbers are the activation values in
the corresponding hidden units.

4.5 Exploring Effectiveness in Patch-based Reinforce-
ment Learning

In the patch-based reinforcement learning, labeled images of directional in-

stances are used as training data. The weights for the output layer are

adjusted during the patch-based reinforcement learning, see Figure 12-15.

As shown in Figure 12, weights connecting hidden units 4, 9 and 19 to the

output unit, which represents the left direction, become bigger. It can be

seen in Figure 11 that the units 4, 9 and 19 are all in a left direction. These

adjustments strengthen the connections between the features and the correct

visual concepts. On the other hand, the weights connecting units 1, 10 and

12 with the output unit decrease in the negative way. In Figure 11, the unit 1

is slightly in a horizontal direction, the unit 10 is slightly in a straightforward

direction, and the unit 12 is in a right direction. Therefore, the adjustments

on these units enlarge the irrelevant distance between the incorrect features

26

-‐1	

-‐0.5	

0	

0.5	

1	

1.5	

2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	

W
ei
gh
ts
	 	 f
or
	 th

e	
ou

tp
ut
	 	 l
ay
ar

Hidden	 units

Reinforcement	
Learnig	 (in	
training	 step	 2)	

Patch-‐based	
Reinforcement	
Learning	 	

Figure 12: Weights connect to the left concept output unit. Weights changed
from reinforcement learning (in training Step 2) to patch-based reinforcement
learning.

-‐1	

-‐0.5	

0	

0.5	

1	

1.5	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	

W
ei
gh
ts
	 fo

r	 t
he

	 o
ut
pu

t	 l
ay
er

Hidden	 units

Reinforcement	
Learnig	 (in	
training	 step	 2)	

Patch-‐based	
Reinforcement	
Learning	

Figure 13: Weights connect to the straightforward concept output unit.
Weights changed from reinforcement learning (in training Step 2) to patch-
based reinforcement learning

27

-‐0.6	

-‐0.4	

-‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	

W
ei
gh
ts
	 fo

t	 t
he

	 o
ut
pu

t	 l
ay
er

Hidden	 units

Reinforcement	
Learnig	 (in	
training	 step	
2)	

Patch-‐based	
Reinforcement	
Learning	

Figure 14: Weights connect to the right concept output unit. Weights
changed from reinforcement learning (in training Step 2) to patch-based re-
inforcement learning

-‐0.6	

-‐0.4	

-‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	

W
ei
gh
ts
	 fo

r	 t
he

	 o
ut
pu

t	 l
ay
er

Hidden	 units

Reinforcement	
Learnig	 (in	
training	 step	 2)	

Patch-‐based	
Reinforcement	
Learning	

Figure 15: Weights connect to the horizontal concept output unit. Weights
changed from reinforcement learning (in training Step 2) to patch-based re-
inforcement learning

28

and the output unit.

5 Results and Disscussion

All 24 labeled images of directional instances are understood by the agent

correctly after training the network with 10 unlabeled images of natural

scenery, 4 labeled images of representative directions and 4 out of 24 labeled

images of directional instances. In other words, the accuracy rate is 100%.

Using 4 labeled images of directional instances in the autoencoder in

the training step 1 instead of unlabeled images of natural scenery (replace

the input in the autoencoder with unlabeled images of natural scenery), the

accuracy rate is 29.2%. Without training 4 labeled images of representa-

tive directions in the reinforcement learning in the training step 2 (skip the

reinforcement learning in the training step 2), the accuracy rate is 58.3%.

Without training 4 labeled images of directional instances in the patch-based

reinforcement learning in the training step 3 (skip the patch-based reinforce-

ment learning in the training step 3), the accuracy rate is 33.3%. As we can

see from the results (Table 3), the results get worse when we skip any one of

the training steps in the learning process.

The following subsections will discuss the results further.

Training approach Accuracy

Take all the 3 training steps 100%
Replace the input in autoencoder with 29.2%
labeled images of directional instances.
Skip reinforcement learning 58.3%
Skip patch-based reinforcement learning 33.3%

Table 3: Test results from different training approches.

5.1 Why Unlabeled Images of Natural Scenery?

When unlabeled images of natural scenery are replaced with labeled images

of directional instances in the autoencoder, the result gets worse. This is

29

because the labeled images of directional instances have less edge features and

more background patches. When the agent scans some amount of random

patches on the labeled images of directional instances, it will get confused

with the large amount of background patches and have difficulty in detecting

major features.

Figure 16 shows the features in the hidden layer when 4 labeled images

of directional instances are used as training data in the autoencoder. It is

obvious that features in Figure 16 are so vague to be identified. Edge features

in Figure11 are far more clear than the features in Figure 16.

This phenomena reveals the utility of having a rich input images to learn

general features in a robust and reliable way.

Figure 16: Weights visualisation in the autoencoder using labeled images of
directional instances .

5.2 Why Labeled Images of Representative Directions?

As it been discussed above, the labeled images of directional instances have

more background information which will interfere with the agent while it is

identifying the major features in these images. In the reinforcement learning

stage, this factor should also be taken into account.

An effective way of initializing the weights is to pre-train the network to

make the weights close to a good solution [9]. This is the utility of train-

ing labeled images of representative directions in the reinforcement learning

stage.

When using only the labeled images of directional instances, the agent will

30

get a large amount of patches with useless information (white background).

Furthermore, patches in the labeled images of directional instances often

contain features that are not strictly in the representative direction. This

disturbs the agent to adjust the weights in the neural network in a promising

way. Using labeled images of representative directions guarantees that the

input images have obvious features of the visual concepts. The reward process

in the reinforcement learning is more accurate.

5.3 Why Labeled Images of Directional Instances?

The labeled images of directional instances are handwritten, so that the

stripes in the images are not strictly straight. By picking patches in the

labeled images of directional instances, different styles of small patches are

taken into consideration for identifying the visual concepts. In this way, the

weights for the output layer are adjusted to handwritten stripes instead of

straight stripes in the reinforcement learning in the training step 2.

The adjustment in the patch-based reinforcement learning in the training

step 3 is slightly, see Figure 12-15. However the impact on the results is big,

see Figure 17 and Figure 18.

For each image, the average value of the accumulated values in each

output unit is generated. Four average values are generated in the four

output units. These four values show how related the image is with the four

visual concepts the output units represent for. The bigger the value is, the

higher possibility that the image conveys the visual concept the output unit

stands for. The output unit with the biggest value is the activation unit for

the input image. As shown in Figure 17, “turning right” is the reaction for the

labeled image of the directional instance No.1, and “going straightforward”

is for the labeled image of the directional instance image No.3.

Figure 18 shows the results in the reinforcement learning in the training

step 2. The biggest value for each input is very different from the one in the

patch-based reinforcement learning in the training step 3. The reaction for

the first input is “turning right” in the patch-based reinforcement learning

31

-‐0.1	

-‐0.05	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

O
ut
pu

ts

Instance

Le0	

Straigh8orward	

Right	

Wait	

Figure 17: Outputs for 24 instances in the patch-based reinforcement learning
in the training step 3.

-‐0.04	

-‐0.02	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

O
ut
pu

ts

Instance

Le0	

Straigh8orward	

Right	

Wait	

Figure 18: Outputs for 24 instances in the reinforcement learning in the
training step 2.

32

in the training step 3, whereas it is “turning left ” in the reinforcement

learning in the training step 2. The reaction for the third input is “going

straightforward” in the patch-based reinforcement learning in the training

step 3, whereas it is “ turning right” in the training step 2. Moreover, the

output values in the reinforcement learning in the training step 2 are smaller

than the ones in the training step 3, which shows that the results in the

patch-based reinforcement learning in the training step 3 are more reliable.

6 Conclusion

In this report, a novel approach of learning visual concepts for a control task

is proposed. This approach takes a common learning experience in the real

world into consideration and performs well in the control task. A two-stage

framework with three training steps is implemented. It is successful on a

three-layer network. The necessity of three training steps and the input data

in those training steps are discussed. The experiments’ results show that an

agent can have the same reaction to different images that convey the same

visual concept. It is promising that more images that convey visual concepts

can be identified with this method, which is helpful in a robot control with

visual instructions. The next step will be to apply this approach to a real

world system. In the real word system, the situation is more complicated.

More complex visual concepts and instances need to be identified by the

robot. The autoencoder will have deep layers when abstacting features from

more complex images of visual instances. The chanllenge will be the noise

and uncertainties in the real enviornment.

33

References

[1] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. ”Representation

learning: A review and new perspectives.” Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on 35.8 (2013): 1798-1828.

[2] Bengio, Yoshua. ”Learning deep architectures for AI.” Foundations and

trends R© in Machine Learning 2.1 (2009): 1-127.

[3] Pugh, Justin K., Andrea Soltoggio, and Kenneth O. Stanley. ”Real-

time Hebbian Learning from Autoencoder Features for Control Tasks.”

ALIFE 14: The Fourteenth Conference on the Synthesis and Simulation

of Living Systems. Vol. 14.

[4] Pan, Sinno Jialin, and Qiang Yang. ”A survey on transfer learning.”

Knowledge and Data Engineering, IEEE Transactions on 22.10 (2010):

1345-1359.

[5] Raina, Rajat, et al. ”Self-taught learning: transfer learning from unla-

beled data.” Proceedings of the 24th international conference on Machine

learning. ACM, 2007.

[6] Lange, Sascha, and Martin Riedmiller. ”Deep auto-encoder neural net-

works in reinforcement learning.” IJCNN. 2010.

[7] Lange, Sascha, Martin Riedmiller, and A. Voigtlander. ”Autonomous

reinforcement learning on raw visual input data in a real world applica-

tion.” Neural Networks (IJCNN), The 2012 International Joint Confer-

ence on. IEEE, 2012.

[8] Jia, Yangqing, et al. ”Visual concept learning: Combining machine vi-

sion and bayesian generalization on concept hierarchies.” Advances in

Neural Information Processing Systems. 2013.

34

[9] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. ”Reducing the di-

mensionality of data with neural networks.” Science 313.5786 (2006):

504-507.

[10] Ng, Andrew. ”Sparse autoencoder.” CS294A Lecture notes 72 (2011).

[11] Hinton, Geoffrey. ”A practical guide to training restricted Boltzmann

machines.” Momentum 9.1 (2010): 926.

[12] Coates, Adam, and Andrew Y. Ng. ”The importance of encoding versus

training with sparse coding and vector quantization.” Proceedings of the

28th International Conference on Machine Learning (ICML-11). 2011.

[13] Elman, Jeffrey L. ”Learning and development in neural networks: The

importance of starting small.” Cognition 48.1 (1993): 71-99.

[14] Ng, Andrew. “Exercise:Sparse Autoencoder”. Available on

http://ufldl.stanford.edu/wiki/index.php/Exercise:

Sparse_Autoencoder.

[15] LISA lab, University of Montreal. “Deep Learning Tutorial Release 0.1

”. Available on http://deeplearning.net/tutorial/deeplearning.

pdf.

[16] Ng, Andrew.“Data Preprocessing”. Available on http://ufldl.

stanford.edu/wiki/index.php/Data_Preprocessing#Data_

Normalization

35

http://ufldl.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder
http://ufldl.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder
http://deeplearning.net/tutorial/deeplearning.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
http://ufldl.stanford.edu/wiki/index.php/Data_Preprocessing#Data_Normalization
http://ufldl.stanford.edu/wiki/index.php/Data_Preprocessing#Data_Normalization
http://ufldl.stanford.edu/wiki/index.php/Data_Preprocessing#Data_Normalization

	Introduction
	Overall Aim
	Background
	Scope and Objective
	Motivation
	Contribution and Related Work

	Problem Definition
	Methods
	Learning Process
	Network Structure
	Agent Action
	Autoencoder Component
	Feedforward
	Backpropogation
	Weight Decay
	Sparsity Penalty

	Reinforcement Component

	Expriments
	Programming
	Parameter Setting
	Exploring Results in Autoencoder
	Exploring in Reinforcement Learning
	Exploring Effectiveness in Patch-based Reinforcement Learning

	Results and Disscussion
	Why Unlabeled Images of Natural Scenery?
	Why Labeled Images of Representative Directions?
	Why Labeled Images of Directional Instances?

	Conclusion

